Predicting the coefficients of the Daubert and Danner correlation using a neural network model
Authors
Abstract:
In the present research, three different architectures were investigated to predict the coefficients of the Daubert and Danner equation for calculation of saturated liquid density. The first architecture with 4 network input parameters including critical temperature, critical pressure, critical volume and molecular weight, the second architecture with 6 network input parameters including the ones in the first architecture with acentric factor and compressibility factor. The third architecture contains 12 network input parameters including 6 input parameters of the second architecture and 6 structural functional groups of different hydrocarbons. The three different architectures were trained and tested with the 160 sets of Daubert and Danner coefficients gathered from the literature. The trained neural networks were also applied to 15 un-known hydrocarbons and the outputs (Daubert and Danner coefficients) were used to predict the saturated liquid densities. The calculated liquid densities were compared with the experimental values. The Results indicated that the coefficients obtained from the second architecture produced more precise values for the liquid densities of the 15 selected hydrocarbons.
similar resources
assessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولPredicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)
Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...
full textthe effect of using model essays on the develpment of writing proficiency of iranina pre-intermediate efl learners
abstract the present study was conducted to investigate the effect of using model essays on the development of writing proficiency of iranian pre-intermediate efl learners. to fulfill the purpose of the study, 55 pre- intermediate learners of parsa language institute were chosen by means of administering proficiency test. based on the results of the pretest, two matched groups, one as the expe...
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
My Resources
Journal title
volume 15 issue 2
pages 78- 90
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023